Dada la expansión del universo, la posición de un objeto es función del tiempo.
\(P_{(t)} = P_0*a_{(t)}\)
\(P_0\) posición inicial
\(a_{(t)}\) es el factor de escala. Definido en \(t_0\) (momento actual) en 1.
Relación con el corrimiento al rojo.
Por la expansión del universo, se genera un corrimiento hacia el rojo debido a que las distancias se agrandan debido al mismo según \(a_{(t)}\). Por tanto:
z= ∆λ/λe y λt = λ0.a(t)
donde λe= longitud de onda al momento de la emisión
de ambas resulta –> \(z = \frac{\lambda_0 – \lambda_0*a_{(t)}}{\lambda_0*a_{(t)}} = \frac{1-a(t)}{a_{(t)}}\)
\(a_{(t)} = \frac{1}{1+z}\)
Por ejemplo, si un objeto tiene actualmente una coordenada x,y,z 3,6,9 y anteriormente estuvo en 1,2,3. a(t) resulta 1/3 ya que
\(P_{(t)} = P_0*a_{(t)}\) entonces z es
\(z= \frac{1-a_{(t)}}{a_{(t)}} = \frac{1-1/3}{1/3} = 2\)
Relación de densidad y corrimiento al rojo
ρ = masa/volumen ; volumen es a3 si consideramos un cubo donde sus lados son el factor de escala, si la masa se mantiene constante, entonces se cancelan al dividir la densidad actual con la calculada. (si consideráramos una esfera cuyo volumen también es proporcional al cubo del radio, resulta equivalente). Informativamente, la densidad del universo se estima en 5*10-28 kg/m3
\(\frac{\rho_1}{\rho_0} = \frac{1+z_1}{(1+z_0)^3}\) como z0 es 1 (actual) =>
\(\frac{\rho_1}{\rho_0} = (1+z)^3\)
Nucleosíntesis primordial
En los primeros segundos después del big bang, la densidad y energía posibilitaban la fusión, pero los fotones existentes tenían energía suficiente para arrancar los electrones de los hidrógenos que se formaban. Esta energía se fue disipando hasta que no lograron romper el hidrógeno el cual también formó helio y para ese entonces, unos 90 segundos después del big bang, comenzó la reacción de fusión dejando un 25% de helio y un 75% de hidrógeno y algunos rastros de litio y deuterio. Relación que aún predomina en la masa actual del universo.
Por otro lado, los fotones de alta energía son capaces de convertirse en masa según E=mc2. Así un fotón puede crear un electrón y un positrón los cuales después se aniquilan produciendo nuevamente un fotón. Hay 1.109 de fotones por cada partícula. Posteriormente los fotones van perdiendo energía y ya no logran crear más partículas. Aparentemente una en un billón no se volvieron a aniquilar.
Al no existir antimateria, se sigue buscando una reacción por la cual las partículas se aniquilen con las antipartículas y quede 1 en 1.109 partes de materia. Con eso se podría justificar la materia del universo.
Cuál sería la edad, densidad y temperatura del universo al momento de que los fotones produjeran electrones-positrones?
La energía del fotón debe ser suficiente para producir ambas partículas,
\(m_e = m_p = 9.1*10^{-31} kg\) ; \(E=mc^2\)
\(E=1.6*10^{-13} J = 10^6 eV\)
Actualmente la energía promedio de un fotón está en 10-3 eV, por tanto:
\(E_{(t)} = \frac{10^{-3}}{a_{(t)}}\) => \(a(t) = 10^{-9}\)
Por lo que el universo era mil millones de veces más denso de lo que es ahora
\(z = \frac{1-a_{(t)}}{a_{(t)}} = 10^9\)
La densidad es inversamente proporcional al cubo del factor de escala y la densidad aproximada actual es de 5*10-28kg/m3
\(\rho \propto \frac{1}{a_{(t)}^3}\) ; \(\rho_0 \sim 5*10^{-28} kg/m^3\)
\(\rho \simeq 0.5 kg/m^3\)
La expansión del universo es uno de los conceptos fundamentales en la cosmología moderna. La posición de un objeto en el universo es una función del tiempo, y se puede expresar mediante la ecuación P(t) = P0 * a(t), donde P0 es la posición inicial y a(t) es el factor de escala. El factor de escala está definido en t0 (el momento actual) como 1.
La expansión del universo también tiene una relación directa con el corrimiento al rojo. El corrimiento al rojo es el fenómeno en el cual la longitud de onda de la luz emitida por un objeto aumenta debido a la expansión del universo. Esto se puede expresar mediante la ecuación z = ∆λ / λe, donde λe es la longitud de onda al momento de la emisión. A partir de esta ecuación, se puede calcular el factor de escala a(t) como a(t) = 1 / (1 + z).
La relación entre el corrimiento al rojo y la densidad también es importante. La densidad se define como masa / volumen, y el volumen está relacionado con el factor de escala. Si la masa se mantiene constante, entonces la densidad actual dividida por la densidad calculada es igual a 1. La densidad del universo actual se estima en 5 * 10-28 kg.
En cuanto a la edad del universo en ese momento, se estima que el Big Bang ocurrió hace aproximadamente 13.800 millones de años. Sin embargo, debido al factor de escala temporal a(t), es difícil establecer una edad precisa para el universo en ese momento. Se sabe que en ese momento, el universo estaba muy caliente y denso, con una temperatura de aproximadamente 10^32 Kelvin, lo que es equivalente a varios trillones de grados. A medida que el universo se expandió y enfrió, las partículas subatómicas comenzaron a formar átomos, lo que permitió la formación de galaxias y estrellas.
En resumen, la expansión del universo tiene un impacto en la posición de los objetos en el universo, así como en el corrimiento hacia el rojo, la densidad y la temperatura del universo. La ecuación de la posición \(P_{(t)} = P_0*a_{(t)}\) relaciona la posición actual de un objeto con su posición inicial y el factor de escala temporal a(t). La nucleosíntesis primordial, ocurrida en los primeros segundos después del Big Bang, también tuvo un impacto en la composición actual de la materia del universo.